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Example - "random" sequence in f0, 1gn

- (f0, 1gn)� comprises 1/2 of the elements of f0, 1gn and, from last
week�s class, we know that the vast majority of elements of (f0, 1gn)� can
be considered as random according to Kolmogorov�s de�nition, at least for
large n

- by symmetry the same argument applies to those elements of f0, 1gn
that end in 0 and so we conclude that, for large n, most elements of
f0, 1gn are indeed random in the sense of Kolmogorov and let�s denote the
subset of such sequences by Rn � f0, 1gn

- suppose we produce such a sequence x = (x1, . . . , xn) 2 f0, 1gn (say via
coin tossing) that is supposed to be i .i .d . Bernoulli(1/2)
- we can test this, but the usual statistical tests are just asking whether or
not the sequence is i .i .d . Bernoulli(1/2) and, as discussed last week, this
is not a test that the sequence is a random sequence (there is no such test
and consider the Champernowne sequence which can be turned into a
sequence of 0�s and 1�s in the obvious way and this sequence will pass the
test for i .i .d . Bernoulli(1/2) for n large enough)
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- so why in the end do we consider that x is a random sequence?

- note that, if we accept the i .i .d . Bernoulli(1/2) model, then each
sequence in f0, 1gn has probability (as belief) 1/2n (even the sequences of
all 1�s, all 0�s, alternating 0�s and 1�s etc.) and therefore, for large
n,P(Rn) � 1
- in other words, in such a context, it is our belief (because that is what
probability measures) that x will be a random sequence

- again probability enters the picture, not as being intrinsically associated
with randomness, but rather in expressing our belief that the sequence is
random

- how large does n have to be for this argument to make sense? I have no
idea and my guess is that it can�t be known (K is not computable)

- so in the end the "belief" about randomness is an unquanti�able,
untestable assertion about reality and the objectivity of the observed data
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Characterizing Statistical Evidence

- Chapter 3 discusses the various approaches that have been taken to
characterizing the concept of statistical evidence

- recall the number of times you read "the evidence in the data says ...",
"based on the evidence in the data ...", etc.

- but how is "the evidence in the data" de�ned or characterized?
The current state of a¤airs is ambiguous and there are di¤erent
approaches to answering this question.

- although we recognize that models and priors may not be "correct", all
of our discussions in this part of the course will proceed as if they are
correct (checking the model and prior comes later)
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1. Pure Likelihood
- based only on the model ffθ : θ 2 Θg and the data x , sometimes put
together as a 2-tuple I = (ffθ : θ 2 Θg, x) and called an inference base
- for inference base I the likelihood function is de�ned as
L(� j x) : Θ ! [0,∞) by L(θ j x) = cfθ(x) for any constant c > 0
- so if an inference depends in some way on c , it is not a likelihood
inference

- the "likelihood function" is really an equivalence class of functions such
that the ratio of any two versions is a constant

- a nice book (for a number of things) Royall, R. (1997) Statistical
Evidence: A likelihood paradigm and another good book Edwards A.W.F.
(1972) Likelihood

- why the constant c?
- to start, let�s suppose interest is in answering E or H for θ

- consider the discrete case so fθ(x) = probability of observing x when θ is
true
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- when fθ1(x) > fθ2(x) (i¤ L(θ1 j x) > L(θ2 j x)) there is evidence in favor
of θ1 over θ2 and the strength of this evidence is given by (Law of
Likelihood) the likelihood ratio fθ1(x)/fθ2(x) = L(θ1 j x)/L(θ2 j x)
- so there is a preference ordering on Θ given by: θ1 is preferred to θ2
whenever L(θ1 j x) > L(θ2 j x) and there is a measure of the strength of
the evidence for one value over another given by L(θ1 j x)/L(θ2 j x) and all
of this is independent of c

- so there is no need, whether in the discrete or continuous case, to give
an interpretation to the value L(θ j x) (e.g., it is not the evidence that θ is
the true value)

- to answer E we must (according to the preference ordering) take
θ(x) = supθ L(θ j x) = the maximum likelihood estimate (MLE) of θ

- the accuracy of θ(x) is then assessed by recording a set

C (x) = fθ : L(θ j x) � k(x)g

so θ(x) 2 C (x) and looking at the "size" of C (x)
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- but how do we choose k(x) (� L(θ(x) j x))?
- the relative likelihood function is given by

Lrel (θ j x) =
L(θ j x)
L(θ(x) j x)

(a likelihood ratio) and note that

C (x) = fθ : L(θ j x) � k(x)g =
�

θ : Lrel (θ j x)) �
k(x)

L(θ(x) j x)

�
- the L of L implies that the interpretation of likelihood ratios is
independent of any particular inference base

- so k(x)/L(θ(x) j x) is taken to be a constant say 1� γ for some
γ 2 [0, 1] and a (1� γ)-likelihood region is

Cγ(x) = fθ : Lrel (θ j x)) � 1� γg

which is comprised of those values which have at least 100(1� γ)% of the
maximum support
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- how do we choose γ?
- this is not at all clear as γ is not a probability
- Royall argues, based on an urn model (a speci�c model and so violating
L of L), that γ = 7/8 gives all those values for which there is "fairly
strong evidence" that they correspond to the true value

- for H, where H0 : θ = θ0, record Lrel (θ0 j x) and say there is strong
evidence in favor of H0 whenever Lrel (θ0 j x) � 1/8
Example Is the Law of Likelihood reasonable?
- Evans (1989) constructs an set of examples, indexed by (k, δ) 2 [0,∞)2,
where L(θ j x) is positive on only two values of Θ, say θ(x) and θ0(x) (the
value not equal to the MLE having positive likelihood), where
Cγ(x) = fθ(x)g for every γ < 1 (so MLE is very "accurate"),
Lrel (θ

0(x) j x)! 0 and Pθ(θ
0(x) = θ)! 1� δ for every θ as k ! ∞

- choose (k, δ) so we are virtually certain that θ0(x) is the true value and
θ(x) is supported over θ0(x) say with likelihood ratio 1010

- this (and other such examples) suggest a problem with the L of L
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- suppose interest is in ψ = Ψ(θ) 2 Ψ
- how do we get rid of the nuisance parameters to make likelihood
inferences about Ψ?
- there doesn�t seem to be a general way to construct a function
LΨ(� j x) : Ψ ! [0,∞) so that LΨ(ψ j x) is a likelihood, namely,
proportional to the probability of observing something

- the general approach is to use the pro�le likelihood de�ned as

LΨ(ψ j x) = sup
θ2Ψ�1fψg

L(θ j x)

and use LΨ(� j x) as a likelihood function to derive inferences for ψ

- under weak conditions, CΨ,γ(x) = ΨCγ(x) (L(� j x) is continuous and
Ψ�1fψg compact for each ψ)
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Lemma If θψ(x) = arg supθ2Ψ�1fψg L(θ j x) exists for each ψ 2 Ψ, then
CΨ,γ(x) = ΨCγ(x).
Proof: Suppose θ 2 Cγ(x) so L(θ j x) � (1� γ)L(θMLE (x)) which implies

LΨ(Ψ(θ) j x) = sup
θ02Ψ�1fΨ(θ)g

L(θ0 j x) � (1� γ)LΨ(ψMLE (x) j x).

Therefore, Ψ(θ) 2 CΨ,γ(x) and so ΨCγ(x) � CΨ,γ(x). Now suppose
ψ 2 CΨ,γ(x) so LΨ(ψ j x) � (1� γ)LΨ(ψMLE (x) j x). This implies

L(θψ(x) j x) � (1� γ)L(θMLE (x) j x)

and so θψ(x) 2 Cγ(x). This in turn implies that ψ = Ψ(θψ(x)) 2 ΨCγ(x).

Corollary The pro�le likelihood MLE ψ(x) satis�es ψ(x) = Ψ(θ(x)).
Proof: Take γ = 0.

Corollary Likelihood inferences are invariant, namely, inferences for
reparameterizations (Ψ is a bijection) transform appropriately.
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Example A pro�le likelihood is not generally a likelihood.
- suppose model is given by

θ fθ(1) fθ(2)
0 1/2 1/2
1 1/3 2/3
2 1/5 4/5

Ψ = IA where A = f0, 1g so Ψ(θ) = 0 if θ = 2 and Ψ(θ) = 1 otherwise

LΨ(0 j 1) = 1/5 LΨ(1 j 1) = 1/2
LΨ(0 j 2) = 4/5 LΨ(1 j 2) = 2/3

- for LΨ(� j x) to be a likelihood there has to be T : f1, 2g ! f1, 2g such
that the likelihoods based on the model induced by T are proportional to
LΨ(� j 1) and LΨ(� j 2)
- since LΨ(� j 1) and LΨ(� j 2) are not proportional, T must be 1-1 to
produce two distinct likelihood functions

- when T is 1-1 its model is given by same table and L(� j x) 6= LΨ(� j x)
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- so the idea of pro�ling is not consistent with the basic idea of likelihood

Example Prediction problems.
- want to predict a value y 2 Y having observed x (y could be a future
value)

- suppose y has model fgδ(� j x) : δ 2 ∆g with δ = ∆(θ) and
δtrue = ∆(θtrue ), then joint likelihood for (θ, y) is

L(θ, y j x) = cg∆(θ)(y j x)fθ(x)
- interest is in y , so pro�le out θ to form a predictive likelihood for y

LY (y j x) = sup
θ
L(θ, y j x)

- then y(x) is the predictor of y and pro�le likelihood regions for this
quantity can be formed to assess its accuracy

- given L(θ, y j x) the pro�le likelihood for θ is

LΘ(θ j x) = sup
y
L(θ, y j x) 6= L(θ j x)

and di¤erent inferences will be obtained
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Summary of the pure likelihood approach
Positives
(1) as we will see, the likelihood for the full model parameter does properly
order the values θ 2 Θ with respect to the evidence
(2) inferences are invariant under reparameterizations
(3) it provides a step in the "right" direction for a full theory by
concentrating on statistical evidence
(4) in many examples it seems to give reasonable inferences
Negatives
(1) it does not provide a characterization of statistical evidence from
which a complete theory can be built, e.g., when does the data x contain
evidence that θ0 is the true value?
(2) in general it does not handle inferences about marginal parameters
appropriately (pro�ling)
(3) there are problems with the L of L (there is no universal scale) as a
measure of the strength of the evidence and there doesn�t seem to be a
way to use the "size" of likelihood regions to measure the accuracy of
θ(x) that isn�t parameterization dependent
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